Correction: Browning of Boreal Freshwaters Coupled to Carbon-Iron Interactions along the Aquatic Continuum
نویسندگان
چکیده
The color of freshwaters, often measured as absorbance, influences a number of ecosystem services including biodiversity, fish production, and drinking water quality. Many countries have recently reported on increasing trends of water color in freshwaters, for which drivers are still not fully understood. We show here with more than 58000 water samples from the boreal and hemiboreal region of Sweden and Canada that absorbance of filtered water (a₄₂₀) co-varied with dissolved organic carbon (DOC) concentrations (R² = 0.85, P<0.0001), but that a₄₂₀ relative to DOC is increased by the presence of iron (Fe). We found that concentrations of Fe significantly declined with increasing water retention in the landscape, resulting in significantly lower Fe concentrations in lakes compared to running waters. The Fe loss along the aquatic continuum corresponded to a proportional loss in a₄₂₀, suggesting a tight biogeochemical coupling between colored dissolved organic matter and Fe. Since water is being flushed at increasing rates due to enhanced runoff in the studied regions, diminished loss of Fe along the aquatic continuum may be one reason for observed trends in a₄₂₀, and in particular in a₄₂₀/DOC increases. If trends of increased Fe concentrations in freshwaters continue, water color will further increase with various effects on ecosystem services and biogeochemical cycles.
منابع مشابه
From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes
Increased concentrations of dissolved organic carbon (DOC), often labelled "browning", is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover ("greening"), and th...
متن کاملMillions of Boreal Shield Lakes can be used to Probe Archaean Ocean Biogeochemistry
Life originated in Archaean oceans, almost 4 billion years ago, in the absence of oxygen and the presence of high dissolved iron concentrations. Early Earth oxidation is marked globally by extensive banded iron formations but the contributing processes and timing remain controversial. Very few aquatic habitats have been discovered that match key physico-chemical parameters of the early Archaean...
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملImportance of Boreal Rivers in Providing Iron to Marine Waters
This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine i...
متن کاملIn-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes
Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014